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Quantitative relationships describing the influence of volume change on the kinetics of 
constant-pressure, isothermal reactions in porous catalysts have been obtained. The 
results are valid for gas-phase reactions in the ordinary diffusion regime. Volume-change 
effectiveness factors were shown to be functions only of the diffusional-kinetic modulus 
and a newly defined volume-change modulus. Asymptotic solutions, developed for zero, 
first, and second order reactions, yielded basic relationships describing the theoretical 
maximum effect of volume change, independent of particle shape. Effectiveness factors 
aa a function of the diffusional-kinetic modulus and the volume-change modulus are 
presented for zero, first, and second order reactions in spherical catalyst particles. 

I. INTRODUCTION 

Chemical reactions occurring in porous 
catalysts become controlled by intraparticle 
diffusion at sufficiently high reaction rates. 
For such reactions, a basic understanding of 
the mode of coupling between diffusive and 
chemical factors is essential to a rational 
analysis of the over-all kinetics (1, 2). For 
reactions in which the number of moles of 
reactants and products are equal, the in- 
fluence of diffusional restriction has been 
expressed in terms of the effectiveness factor 
concept (1-9). The effectiveness factor, r], 
represents the mtctual reaction rate divided 
by the rate which would occur if the intra- 
particle reactant concentration were every- 
where identical to that at the pellet surface. 
For constant-volume reactions of fixed 
order, 7 is a function only of the diffusional- 
kinetic, or Thiele modulus, cp. 

For example, for semi-infinite flat plates, 
the normalized intraparticle concentration 
and its gradient are (S), 

y = cash cpr/cosh cp (1) 

!$+&qqEE) 

- (--&g = dY2 - YWZ (2) 

For diffusionally restricted reactions at 
constant pressure in which the volume of 
reactant and product differs, and the trans- 
port mechanism is ordinary diffusion, the 
kinetics may be significantly affected rela- 
tive to the constant volume cases just de- 
scribed, i.e. the q vs. cp relationship may be 
shifted. Such a reaction may be represented 
as: 

A-+nB (3) 
Thiele (5), using a graphical technique, 

computed the effect of volume expansion 
for a few cases of first order reaction in flat 
plate geometry. Hawthorn (IO), using nu- 
merical methods, computed effectiveness 
factors for volume-change reactions under 
isothermal and nonisothermal conditions. 

The present study has the objective of 
quantitatively assessing the effects of (1) 
volume change [value of n in Eq. (3)], (2) 
order of reaction, and (3) concentration of 
inert diluents on the kinetics of constant- 
pressure, isothermal reactions in porous 
catalysts when the mass transport mecha- 
nism is ordinary diffusion. 

II. NOMENCLATURE 

a Radius of sphere or half-thickness of 
plate (cm) 
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Cross-sectional area normal to flow 
(cm”> 
Reactant 
Product 
Concentration of reactant A,( g moles/ 
cm3) = gC1 
Concentration of A at catalyst surface, 
(g moles/cm3) 
Total gas concentration (g moles/cm3) 
Effective gas diffusivity in catalyst 
(cmz/sec) 
Reaction rate constant [see-’ (g moles/ 

cm3)l-mJ 
Order of reaction 
Stoichiometric coefficient in reaction 
A-+nB 
dy jdr 
Molar flux of component i (g moles/ 
cm2 see) 
c/a, normahzed distance from center 
of sphere or flat plate 
Normalized extinction length; frac- 
tional distance from center where 
y = 0, for zero order reactions 
Exterior surface area of particle 
Volume of particle 
?JX~ = C/C,, mole fraction of A in gas 
Mole fraction of component i in gas 
x/x1 = C/Cl, normalized concentration 
of reactant A 

Greek Symbols 

Divergence operator 
Distance from center of plate or sphere 
(4 
Effectiveness factsor, constant-volume 
case 
Effectiveness factor, volume-change 
case 
(n - 1)x1, volume-change modulus 
Empirical constant 
( V&L) fb’De> 112, volume to surface dif- 
fusio!~-k~etic modulus 
a(kC~m-l/D,)‘fz, diffusional-kinetic 
(Thiele) modulus 
(3 V,/Sv) (k/De) 1/Z 

Effective value of quantity 
Exterior surface of flat plate or sphere 
Components i,j 
Center of flat plate or sphere 

Superscripts 

Designates quantities for volume-change 
reactions 

III. ENVELOPMENT OF BASIC 
DK~~~~E~IAL EQUATIONS 

The following derivation applies to porous 
catalyst particles in the form of flat plates or 
spheres at whose surface the reactant con- 
centration is held constant. Complicating 
factors such as surface diffusion, adsorption 
kinetics and equilibria, and externa.1 diffu- 
sion are assumed to be absent. The dif- 
fusivity of any inert diluent in the feed is 
assumed to be the same with respect to both 
reactant A and product B. This condition is 
approximately realized in practice since all 
gases (except Hz and He) have diffusivities 
lying in a reasonably narrow range. Thus, 
we work with a single diffusion coefficient in 
the catalyst pore space, D,. 

The basic relations describing species 
transport in ideal gas mixtures when eon- 
vection and ordinary diff~~sion occur simul- 
taneously are the Stephan-Maxwell equa- 
tions, 

vxi = I(wj - xiqi)lCTa4,,1 (4) c 

where the binary diffusivities a>;j have been 
replaced by the effective diffusivities, Dei,j, 
in the catalyst pores (11-18). In a binary 
system containing only A and B reacting 
according to Eq. (3), the following auxiliary 
relationships are applicable, 

%A + XB = 1 (5) 

nqA = -qB (6) 

Substitution of Eqs. (5) and (6) into Eq. (4) 
yields, 

qA = {&cl/f1 + (n - l)xA]]vxA 17) 

The material balance on a differentiai ele- 
ment of catalyst lying between p and [ + df 
is, for mth order reaction 

(Input flux at {> - (Output flux at r + df) 
= reaction rate in df. Substitution in Eq. 
(8) for qA from Eq. (‘7), introduction of the 
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appropriate normalizing definitions, and 
simpIi6cation yield the basic differential 
equations. 

For flat plates (mth order reaction) 

d2y L9 
0 

cl?] 2 
d13 

- - -l. = (02y”(l + ey) (9) 
1 + BY dr 

For spheres (mth order reaction) 

I 
= (P2y”(l + Oy) (10) 

with boundary conditions: 

1. dy/dr = 0 at r = 0 
2. y = latr= 1 

Note that boundary condition 1 implies that 
dy/dr = 0 when Y = yo. Examination of 
Eqs. (9) and (10) shows that the influence 
of the volume expansion on the electiveness 
factor is a function of only the single modulus 
0, which will hereafter be called the volume- 
change modulus. The modulus 0 = (n - 1)x1 
is seen to be composed of an “expansion 
factor,” 7~ - 1, multiplied by a “dilution 
factor,” xl, which together give a measure 
of the net “intensity” of the volume-change 
effect. Thus, the effectiveness factor for 
volume-change reactions is a function only 
of the conventional diffusional-kinetic modu- 
lus 40 and the volume-change modulus 0. 

When no volume change occurs (@ = 0), 
Eqs. (9) and (10) are seen to reduce to the 
conventional relationships which have been 
treated previously (1-9). 

The effectiveness factor for mth order re- 
action with volume change in a spherical 
catalyst pellet is, 

The ratio of effectiveness factors for volume- 
change to non-volume-change reactions is, 

IV. CALCULATION METHODS AND 
PRESENTATION OF RESULTS 

In this section, previous solutions to Eqs. 
(9) and (10) are reviewed and new solutions 

are presented. First, analytic solutions to 
non-volum~eha~ge eases are discussed in 
order to provide a frame of reference. Then, 
it is shown that an asymptotic solution for 
the volume-change case can be obtained. 
Finally, solutions for volume-change reac- 
tion in spherical geometry [Eq. (lo)] are 
computed numerically and shown to be in 
close agreement with the ~ymptotic solu- 
tions. 

A. Analytic Solutions 

Certain important cases are amenable to 
analytic solution. With no volume expansion, 
zero and first order reactions yield closed 
form solutions for spherical, cylindrical, and 
flat plate geometry. Thiele (S) and A& (5) 
present solutions for first order reactions 
while Wheeler (4) treated general mth order 
reactions with flat plate geometry. 

For zero order reactions in spheres, with- 
out volume expansion (i.e., m = 0, 6 = 0) a 
closed form solution of Eq. (10) is possible. 
The boundary conditions are, 

1. Y = latr=l 
2. y = 0 at r = r. 

The extinction radius, r,, is the normalized 
radius at which the concentration of reactant 
becomes zero. This “reactant exhaustion 
phenomenon” is unique with zero order reac- 
tions and is a consequence of the independ- 
ence of reaction rate and reactant eoncen- 
tration. The required solution of Eq. (10) 
for no volume expansion is given as follows: 

Y = 1 - (1 - r) 
{ 

$(I +r) 

re v;“(l + re> -- 
r [ 

1 
6 1 - r, I} (131 

If the dimensionless concentration Y is 
finite at T = 0, then rB must also be zero and 
Eq. (13) becomes, 

y = 1 - (fp”/6) (1 - r2) (14) 

Differentiation of Eq. (14) and substitu- 
tion into Eq. (11) shows that v = 1 when- 
ever the reactant concentration is finite at 
r = 0. Furthermore, the value of cp at which 
y = 0 at r, = 0 can be obtained from Eq. 
(14) as t/-, Thus with no volume expansion, 



if p < d, then tl = 1.0 for zero order re- 
actions in spheres. 

For cp > 4, the effectiveness factor can 
be obtained by differentiating Eq. (13) and 
substituting in Eq. (11). The result is 

[ 
1 + l-0 q=l-rTc 2- 

3 
(P2(l - r.) I 

(15) 

The relationship between cp and r, can be 
obtained from the condition that when 
T = T,, dy/dr = 0. This relationship is: 

(p2 = (1 - r.)[t(13+ r,) - re’] (16) 

Finally substitution of Eq. (16) into Eq. 
(15) gives the following form of the effective- 
ness factor: 

q = 1 - r83 for cp > l/s’ (17) 

Thus the effectiveness factor is the ratio 
of the volume in the sphere where y # 0, to 
the total volume. Using Eqs. (16) and (17) 
the effectiveness factor for the zero volume 
expansion case is presented on Fig. 1. 
Thiele’s results (S) were used for the 0 = 0 
curve in Fig. 2 for first order reaction. 

B. Asymptotic Solutions 

The differential equation for spheres [Eq. 
(lo)] is seen to differ from that for flat plates 
[Eq. (9)] by a single term. Examination of 
Eqs. (1) and (2) (no volume change) shows 
that, as the modulus cp increases, the greatest 
amount of reaction takes place near the 
pellet exterior. Also, the concentration 
gradient at the surface is seen to increase 
linearly with cp, when cp becomes large. These 
two factors indicate that, for sufficiently 
large values of the modulus cp, 

in Eq. (10) and the equations for spheres and 
flat plates become identical. We thus seek 
a solution to Eq. (9) which, by virtue of the 
arguments cited above, will be valid for 
spherical geometry, provided the diffusional- 
kinetic modulus cp is sufficiently large. 
Criteria for the limiting values of cp will be 
subsequently developed. 

Equation (9) does not contain the inde- 
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FIGS. l-3. Influence of volume change on 
catalyst effectiveness. 

FIG. 1. Zero order reactions-spherical particles. 
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FIG. 2. First order reactionsspherical particles. 
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FIG. 3. Second order reactions--spherical particles. 

pendent variable and can, therefore, be 
solved by conventional methods using the 
substitution p = dy/dr, yielding, 

bW/dd - W/Cl + mp* = 2P2YV + 69) 

(18) 
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Solution of Eq. (18) and application of the 
boundary condition p = 0 when y = l/o 
yields 

First order reaction (m = 1) 

that, the terms in Eqs. (19) involving yo can 
also be dropped for sufficiently large cp. For 
example, the eon~entration gradient at the 
pellet exterior for first order reaction then 
becomes, from Eq. (19a) 

P dY 
=dr = cp l/3(1 + ey) $ - f ln(1 +eY) (j,J 1 

l/2 dr lzrl =cpdZ(1-t-8) i--$ln(l+O) 

- ; + +l (1 + By,) 
1 

If2 (19aa) 

Zero order reaction” (m = 0) 

p=$=(n~~(l+By) +(1+&y) 
i 1 112 

Wb) First order reaction 

Xecond order reaction (m = 2) 

(19c) 

Reference to Eq. (2) shows that, for con- 
star&volume reactions in flat plates, the 
normalized concentration gradient at the 
pellet surface can be expressed as, 

~/~l~u[~]~l=.iY~l)l=~ 
when cp > 5 (2Oa) 

Similar developments lead to expressions for 
concentration gradients for zero and second 
order reactions (5, 4). 

3 second order (p > 5) (20~) 

Physic~ly, Eqs. (20) state that for Q > 5, 
the reactant concentration at the pellet 
center, yo, has been reduced to a sufficiently 
low value that it no longer has any influence 
on the concentration gradient at the surface. 
We argue that the same line of reasoning 
applies to the volume-change reactions and 

* For finite extinction radius, ye = ~y(O)/dr 
= 0. Hence there is no constant involving ye in Eq. 
(Bb). 

t This expression is exact for finite extinction 
m&us. 

(21) 

Similarly for the other reaction orders. Sub- 
stitution from Eqs. (19) and (20) into Eq. 
(12) produces the asymptotic relations for 
the effectiveness factor ratio for flat plates. 

Zero order reaction 

7f= f In (1 + 0) I 
r/2 

1) 
(22b) 

Xecond order reaction 

?$q/$ .$ [ - J + i ln (1 + 0) I 
l/Z 

G32c) 9 
Equations (22> are valid only for (p > -5, 
A signi~~ant conclusion which may be 
drawn from Eqs. (32) is that, for sufficiently 
large cp, the shift in rl is a function only of 0. 
This conclusion is valid regardless of geom- 
etry. The shifts &own in Eqs. (22) are the 
~~~rn~~rn ~~~~?%~~~e. Equations (22) show 
that, for a given reaction order, all curves 
in the q--p plane have identical sIopes at 
su~ciently large cp. This is shown in Figs. 
l-3. 

The quantity $/q from Eqs. (22) is shown 
plotted vs. 0 in Figs. 4, 5, and 6 as the 
curves labeled p = *. 

C. Numerical Solutions 

Since a closed form solution of Eq. (10) 
for B $ 0 does not appea,r possible in terms 
of ordinary functions, numerical solutions 
were sought,. The solution method employed 
was that of Nordsieck (14) adapted to the 
IBM 7040 computer by Hicks (15). This 
method provides stable solutions with auto- 
matic step-size adjustment based on a 
specified accuracy. 
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ZERO ORDER REACTIONS - SPHERICAL PARTICLES 
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FIGS. 46. Effectiveness factor ratios for constant volume and volume change reactions versus vol- 
ume change modulus. 

FIG. 4. Zero order reactions--spherical particles. 
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FIG. 5. First order reactions-spherical particles. 
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SECOND ORDER REACTIONS-SPHERICAL PARTICLES 

cp = FINITE (NUMERICAL SOLN. 0~ ~0. lo) 

I i.i I I I I I 1 I I i i i i i 
-I 0 I 2 

VOLUME CHANGE MODULUS, B 

FIG. 6. Second order reaction-pherical particles. 

3 

It should be noted that the required 
boundary conditions are split, that is one 
condition is given at r = 0 and the other at 
T = 1. The solution was begun by assuming 
the reactant concentration at the particle 
center (T = 0) and the concentration was 
computed at T = 1 by the numerical tech- 
nique. Convergence on the external con- 
centration was required to be y = 1.0 f 
0.001. A modified Newton technique was 
employed to speed convergence giving typi- 
cal converged solutions in 5 min of machine 
time. 

A check was made on the computer pro- 
gram by solving numerically the first order, 
non-volume-expansion case and comparing 
the result to the analytic solution. The 
numerical calculation checked the analytic 
to within 1 part in 10’. 

The results of the numerical calculations 
are presented in Figs. 1 through 6 and are 
also tabulated in Table 1. Figures 1, 2, and 
3 present the effectiveness factor vs. cp with 
the parameter e covering a fourfold range of 
volume expansion or contraction and values 
of cp ranging up to 10. 

Figures 4, 5, and 6 present the ratio of the 
volume change to the nonvolume change 
effectiveness factors as functions of cp and 
0. The limiting case of cp = ot, was computed 
from the asymptotic solutions given by Eqs. 
(22). It is important to note that when cp is 
finite, the ratio r]‘/q is known exactly at the 
limiting value of e = -1 (i.e., complete 
volume contraction). The volume-change 
effectiveness factor (r]‘) approaches 1 as 0 
approaches - 1, since the increasing inward 
flow of molecules causes the reactant con- 
centration in the pellet to everywhere 
approach the external concentration. Thus 
the following limit results: 

For cp = w the effectiveness factor ratio 
becomes infinite at 0 = - 1. The limiting 
case of e = -1 can be attained only with 
pure feed streams (~1 = 1). 

Examination of the asymptotic solutions 
(valid for large cp), given in Eq. (22), shows 
that v’/q approaches zero as 0 becomes in- 
creasingly large. The same argument can be 
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TABLE1 
EFFECTIVENESS FACTORS FROM NUMERICAL SoLUTrON OF Es. (10) 

P 
0.5 1.0 3.0 6.0 10.0 

m=O 

-0.75 1.0 1.0 1.0 0.7498 0.5015 
-0.50 1.0 1.0 0.9958 0.6738 0.4432 

1.0 1.0 1.0 0.8550 0.5102 0.3253 
2.0 1.0 1.0 0.7946 0.4619 0.2923 
3.0 1.0 1.0 0.7486 0.4286 0.2698 

m=l 

-0.75 0.9966 0.9830 0.8487 0.5856 0.3917 
-0.50 0.9917 0.9674 0.7684 0.5011 0.3927 

1.0 0.9690 0.8915 0.5666 0.3366 0.2149 
2.0 0.9537 0.8530 0.5046 0.2934 0.1861 
3.0 0.9408 0.8193 0.4623 0.2647 0.1670 

m= 2 
-0.75 0.9915 0.9673 0.7709 0.5104 0.3393 
-0.50 0.9842 0.9392 0.6752 0.4250 0.2782 

0 0.9683 0.8915 0.5703 0.3434 0.2210 
1.0 0.9407 0.8196 0.4651 0.2696 0.1712 
2.0 0.9156 0.7662 0.468 0.2308 0.1459 
3.0 0.8940 0.7241 0.3676 0.2060 0.1295 

extended to situations involving finite cp by 
noting that incxeas~gly large 8 always re- 
duces the particle center reactant eoncen- 
tration toward zero, i.e., to the asymptotic 
case. 

V. DWXJSSION 

The Stefan-Maxwell relations [Eq. (4)], 
from which the basic differential equations 
(Eqs. (9) and (lo)] were derived, are strictly 
valid only for ideal mixtures of gases. How- 
ever, the results of this study are expected 
also to apply to all fluid mixtures not deviat- 
ing seriously from ideality. 

The volume-change modulus, 

e = (n - 1)X1, 

is directly proportional to the mole fraction 
of reactant in the feed. Thus, for fixed 
stoichiometry, the influence of d&rents on 
the shift in reaction rates is quite significant, 
as shown in Figs. 1 to 6. In fact, volume- 
change efIects are seen to be virtually absent 
in highly dilute solution, due to the ability 
of the inert gases to moderate the effect of 
the net molar flux. 

Since the asymptotic solutions are valid 
when the concentration at the particle center 
is essentially zero, the numerical and asymp- 
totic solutions should approach each other 
at large values of cp. Figure 7 gives an exam- 
ple of the excellent agreement of the asymp- 
totic and numerical solutions for increasingly 
large (p. Figures 4-6 also show that as ip be- 
comes larger the asymptotic and numerical 
solutions approach each other for all values 
of the volume-change modulus, 8. Numerical 
calculations were made up to P = 10 (cf. 
Figs. I-3). Figures 4-6 show that the 
asymptotic solution differs by less than 
about 2.5y0 from the (o = 10 curves for 
all 0. It is, therefore, recommended that the 
asymptotic solutions given in Eq. (22) be 
used for work in the range above tp = 10. 

As noted earlier, zero order reactions give 
effectiveness factors of 1.0 when the center 
concentration is finite. Thus on Fig. 1 as 
the volume-change modulus @ decreases, 
the e~ecti~reness factor becomes 1.0 at pro- 
gressively higher values of the diffusional- 
kinetic modulus C+P. This same effect is shown 
on Fig. 4. 
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SPHERICAL PARTICLES - FIRST ORDER REACTIONS 
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Fxo. 7. Convergence of asymptotic to numerical solution for volume-change reactions. 

It is also shown on Fig. 4 that, for volume 
contraction (i.e., 6 < 0), the ratio of $/v 
can become independent of 6 for zero order 
reactions. This phenomena occurs because 
at a fixed ys, as 0 is decreased, the center 
concentration will eventually become finite. 
Thus while Q’ = 1.0, 11 5 1.0, and a con- 
stant q’/q ratio results, smce q is, by defini- 
tion, independent of 8. 

Figure 8 is a map of the 01 and 6 space for 
zero order reactions, defining the conditions 
under which the transition to unit effective- 
ness factor occurs. The line represents the 
locus of points fulfilling the criterion g = 0 
at T = 0 when r, = 0. These points were 
determined from the numerical solution of 
Eq. (10). 

All numerical calculations were based on 
spherical geometry. However, Aris (5) has 
shown that by defining the d~usion~- 
kinetic modulus as A = (~~/~~)(~/~~)1’z (for 
first order reactions), cylinders, spheres, and 
flat plates can be approximated by a single 
line on an q vs. A plot. The maximum devia- 
tion was 16% between flat plates and 
spheres at A = 2. 

The A& approximation is essentially a 
shifting of the diffusional-kinetic modulus 

FIG. 8. Unit effectiveness factor region for zero- 
order reactions. 

to give a common curve for all geometries. 
A similar shift for the volume expansion 
cases also appears to work equally as well. 
Thus Fig. 2 may be used for other shapes by 
employing a redefined value of ‘p, say ‘p’, de- 
fined on the basis of the volume-to-surface 
ratio of the particle. This value of cp is 

cp’ = (3VplSz) (k/L),) ‘I2 (23) 

Thus for Aat plates, p’ = ~u(~/~~)I/~, for 
cylinders, y3’ = Zu(k/L),)“*, and for spheres, 



INFLUENCE OF VOLUXE CHANGE ON GAS-PHASE REACTIONS 269 

,‘p’ = u(~/D$‘~. Table 2 shows a comparison 
of effectiveness factors computed in this way 
with some numerical calculations for flat 
plates obtained for @ = 1 by Thiele (3). 
Table 2 shows that the use of cp/ brings the 
effectiveness factor plots for spheres and 
flat plates into approximate agreement as 
was also observed for the nonvolume case 
(5). 

TABLE 2 
COMPARISON OF EFFECTIVENESS @‘ACTORS NITH 

VOLUME AND CHANGE BASED ON 
SHAPE FACTOR APPR~XIM.~TI~N 

First order reaction, ff = 1 
FlSt pIatL% [rP’ = 3U(k/D*)“el From Th+Ie’a 

a(k/DP P’ 
From Fig. 2 

‘I’ 
Fig. I-IVan 

4 

10 30 0.08 0.08 
5 15 0.15 0.16 
3 9 0.24 0.25 
2 6 0.34 0.37 
1 3 0.56 0.64 
0.3 0.9 0.90 0.9‘2 

G Reference 3. 

From Fig. 2 it can be observed that the 
effect of vdume change is a displacement of 
the 0 = 0 curve. This suggested a simple 
approximation for first order reactions which 
would be of considerable use in computer 
programs. The approximation for spheres, 
which can be used over the entire range of cp 
is a simple displacement of cp as follows: 

+ = 41 + w 124) 
where X = 0.4 for volume expansion, h = 
0.35 for volume contraption. 

This displaced value of cp may then be used 
in the analytic effectiveness factor expression 
for first order reactions (0 = 0) as follows: 

Comparison of the approximate method with 
the numerical solutions showed that the 
absolute error was less than 37& for volume 
expansion and less than 5% for contraction. 

As shown earlier, the first order analysis 

with volume expansion could be extended to 
other geometries by including a volume-to- 
surface term in the p modulus. The displaced 
modulus to be used in Eq. (25), for ail shaped 
particles and first order reactions with 
volume change, is as follows: 

cp’ = (3V,/S,)(l + e)~(~/~~)~‘z (26) 

Results shown in Fig. 2 and also given by 
Eq. (24) agree with the empirical correlation 
developed by ~a~horI1 (Eq. 4.6 of ref. 10). 

VI. CONCLUSIONS 

1. Volume change may significantly affect 
the rate of diffusionally restricted reaet~ions 
in porous catalysts. 

2. The influence of volume change on 
effectiveness factors is dependent on a single 
parameter 8, designated as the volume-c~urlge 
modulus; 0 is a function solely of the reac- 
tion stoichiometry and mole fraction of re- 
actant in the feed mixture. 

3. The shift in e~ectivene~ factors due to 
voiume change, relative to the constant- 
volume case, has an upper bound which is 
closely approached when cn becomes large. 
This upper limit is a function only of 8 and 
is thus independent of the reaction rate con- 
stant and catalyst characteristics. The 
present work has shown that the upper 
bound to the effect of volume changes is a 
weak function of reaction order. 
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